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INTRO

Artificial neural networks (ANNs) are computing models that intend to mimic the neuron
structures of brains in organic beings. In organic life, neurons are connected to each other via
synapses. These synapses act as a communication channel that enables neurons to communicate
with other neurons. This network of neurons and synapses creates a neural pathway and it’s this
complex interwoven neural pathway that enables brains to think. This structure is mimicked in
ANNSs by creating computing blocks called nodes that function as neurons. These nodes are

connected to each other and the strength of the connections is modeled as a weight.

FEEDFORWARD NEURAL NETWORK

The diagram in Figure 1 illustrates a basic ANN structure. The input layer of the ANN
consists of 3 input nodes, a hidden layer of 4 nodes, and an output layer of 2 nodes. This structure
in known as a feedforward neural network. Feedforward neural networks only propagate
information in the direction of input to output. This means that no cycles exist within the network

structure and data is never propagated backwards in the network.
|Ii_£|_<!f*||

Input | |

Figure 1: ANN Basic Structure
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There can be any number of nodes in the hidden layer and there can be any number of
hidden layers. The number of nodes in the input layer is equal to the number of features of the
inputted signal that is to be processed by the ANN. For example, in an ANN that classifies hand
written numbers written on a 8x8 grid will have 64 input nodes in the input layer. The number of
output nodes is equal to the number of features of the outputted signal. In the hand-written number
classifier example, the output layer would have 10 output nodes for numbers 0 through 9. The
structure of a single node can be seen in Figure 2. The inputs from all the previous nodes are first
multiplied by a weight, w; ;, then all summed together with the addition of a bias, b. The value at n is
evaluated as n;(t) = Y; p;w; j + b; where j is the j*" node in a given layer. The output of the node, a,
passes the value n through a transfer function known as an activation function to compute the final
output. Thus, the outputisa = f(Zl- wi ip; + bj). The activation function, f(+), is used to bound the
output. Typically, this activation function bounds the output between 0 and 1 as in the case of

sigmoid activation function or between -1 and 1 as in the case of the tan-sigmoid activation

function.
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Figure 2: Node Structure

The illustration in Figure 3 shows the structure of multiple nodes in a single layer. Note that
the weight is of size [ixj] where j is the number of nodes of the layer under inspection and i is the
number of nodes of the previous layer. The bias and output matrix is of size [jx1], again where j is
the number of nodes of the layer under inspection. The matrix representation of such a single layer

of a neural network is
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where w; ; is the weight matrix, p; is the input matrix, b; is the bias matrix, and h; is the output
matrix of size [ix1]. The output matrix h; of the previous layer becomes the input matrix of the

following layer and a new weight and bias matrix is implemented for each layer.

Input Meurons

Figure 3: Node Structure of Multi-Node Neural Network

RECURRENT NEURAL NETWORK

In systems in which time dependent series information is involved, a method must be
implemented in which the system has memory. This is accomplished in neural networks in the form
of recurrent neural networks in which the outputs of a layer may backpropagate to previous layers.
The basic structure of such a network can be seen in Figure 4 in which the output of the hidden

layer is also connected to the input of the hidden layer.
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Output(t)

Figure 4: Recurrent Neural Network Structure

The illustration in Figure 5 shows a single recurrent neuron and its structure unfolded in time. The
input to a single neuron is the same as in the feedforward neural network with the addition of the
output from the previous computation. Having the output of a neuron connected to its input creates
feedback in the system. This feedback is what enables the ANN to train on time series data. The
weight matrix for the feedback doesn’t need to be the same as the weight matrix of the feedforward
weight matrix. This additional weight matrix adds more complexity to the system but allows for

time series data to be computed.
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Figure 5: Recurrent Neural Network Single Neuron

GRADIENT DESCENT TRAINING

The training process of an ANN is when the weights and bias matrices are tuned so that the

output of the neural network is meaningful to the input. The training process requires a training set
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with inputs and correlated outputs. During the training process, the weights and biases are tuned
so that the error between the output of the ANN and the correlated training set output is small. This
is a difficult process because there are many parameters that must be adjusted during the training
process and the tuning of one parameter influences the behavior of the entire ANN. The difference
between the output of a single element of the training set of the ANN and the correlated training set
solution is tracked as an error. As the ANN trains, the error needs to decrease. The smaller the error
is, the more accurate the ANN is at computing a meaningful output. The training process adjusts
thousands of parameters and must do so in a way to improve performance of the system. The
method typically used is gradient descent.

Gradient descent is an optimization technique used to find local minimums of multivariable
functions. This is exactly the type of problem that is posed by the training of an ANN. Gradient
descent searches for the steepest negative slope at a given point by calculating the gradient of the
loss function and moves in the direction of the that slope. The distance that the loss function is
stepped, in the direction of the greatest negative slope, is a hyperparameter known as the learning
rate. Setting this parameter too small with make the training process unnecessarily slow but
making the training rate too large has the potential of stepping passed the local minimum. This
process is done until a local minimum is located at which the slope in all direction is non-negative.

This direction of descent is tracked through the mean square error of the loss function. The

mean square error averages the error of all the parameters in all directions.
1 2
J= EZ(%‘ — f(x)
i

o 9 i) and the step

The gradient of the mean square error is calculated as VJ (W) = (6w A
1 2 n

towards the local minimum, denoted as W:= W — aVJ(W) where « is the learning rate.
This method is useful to find absolute minimums of simple functions but won’t necessarily

find absolute minimums of high dimensional functions like the one seen in Figure 6. A function such
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as the one seen in the example has many local minimums and as such using the gradient descent
method used above won'’t guarantee that the located minimum is absolute. Different training
algorithms may be used to attempt to circumvent this issue but isn’t always necessary. Finding a

local minimum will often yield results that are sufficient.

Wolfram Global Problem

Figure 6: High Dimensional Function Example

ADAPTIVE MOMENTUM STOCHASTIC GRADIENT DESCENT

The previously mentioned method evaluated the entire data set to determine the gradient.
This is known as batch gradient descent (BGD). This process is very slow and computationally
intensive as the entire dataset must be processed. Doing so also has the issue of only finding a local
minimum rather than an absolute minimum. To overcome this, stochastic gradient descent (SGD)
can be used. Unlike BGD, SGD updates the weights of the system after randomly sampling a single
data point in the set. By sampling a single data point, instead of the entire set, the gradient descent
path is more irregular but still tends towards a minimum without getting stuck in a local minimum.
Instead of sampling a single point, the data set can be divided into several smaller sample sets and
the gradient of these smaller subsets of data can be calculated. This method of dividing the data set
into many smaller sets is known as mini-batch gradient descent (MB-GD). MB-GD has the benefits of

faster computations like SGD but follows a much smoother and reliable path like BGD.
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To further improve the performance of finding a minimum, the update parameter can be
modified to include momentum. Momentum on the update parameter makes the update parameter
behave as a function of the previous updates. This means that the update parameter will tend
towards the direction of the previous update.

W= Wy — aV](W;) , Parameter Update without Momentum
Wi:= W,_q — az; , Parameter Update with Momentum
zp:= Bi—1 + VJ(W;_1) , Momentum Adjustment Parameter
In this modified version of the update parameter, the current update is dependent on the previous
update and the value of . By setting 8 to 0, the update function once again becomes the update
function with no momentum. Increasing  makes the update function more sensitive to the
previous update.

Another issue that arises from the established method is that by setting the training rate a
to a fixed value, an assumption is made that this value is sufficient for all parameters of the function.
This is rarely true thus a method of modifying the training rate as the ANN trains can yield better
training performance. Modifying the learning rate during the training process is known as adaptive
gradient. A popular and simple adaptive gradient technique used is adaptive sub-gradient in which
the parameters of the function are adjusted according to their own gradient. The expression for
adaptive sub-gradient is as follows

a d]
Gl-—E aVvi

Wil = w; —

The term € is a small value used to prevent division by 0. The intent of adaptive sub-gradient
descent is to adjust the learning rate a so that the large gradients are slowed down and small
gradients are speed up.

Combing both the momentum method and adaptive method of training yields a training

method known as Adam. This technique combines the benefits of both methods by adapting the
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learning rate according to past gradients as well as including momentum to smooth the path of
descent. This is done by calculating the average of the past gradient (m ;) and the past squared
gradient (v ;). These values are an estimate of the first and second moment of the gradients
respectively.

me=pimeq+ (1 —B1)ge

v =Pover + (1 - Bo)gf
To avoid these vectors from tending towards 0 as a result of them being initialized as 0 vectors,

both the first and second order moments are approximated as follows.

. my
T
~ 43
vtzl——ﬁzt

Once these moments are calculated, the update parameter is then calculated as

a

Jo+e

~

Orr1 =0 — mg

PROJECT

For the project, | have attempted to train a RNN on time series MIDI data so that the RNN
can predict the next notes of a song given preceding notes. MIDI (Musical Instrument Digital
Interface) data contains a track number, channel, number, note number, velocity, start time, end
time, message number of note on, and message number of note off.

Track Number - Which track the note is being played to

Channel Number -The instrument the note is played on

Note Number - Which note is to be played

Velocity - The loudness of the note being played

Start Time - When to begin playing the note

End Time - When to stop playing the note

8|Page



Message Number of Note On and Off - These values are used to track the sequences of

events of the notes being played.

Tack Number| Channel Number|Note Number|Velocity| Start Time End Time |Message Number On|Message Number Off
2 0 76 82 0 0.196039948 9 11
2 0 75 94 0.190216979 | 0.384957917 10 13
2 0 76 104 0.37267 0.544700833 12 15
2 0 75 104 |0.534168333| 0.7630605 14 17
2 0 76 105 0.70971 0.892626 16 19
2 0 71 97 0.88881525 | 1.084786531 18 21
2 0 74 97 1.075542 1.23824575 20 23
2 0 72 91 1.232699031 | 1.402798406 22 24

Figure 7: MIDI Data Format Example

This data structure works well for training an ANN because all of the data is discretized, and
each discretized sample corresponds into a single time event note. Each note occurs sequentially in
the MIDI file with a time step thus the data can be used as a time series data set.

For this project, the music the ANN was trained on is of the solo pianist type. This was
selected because the music is simpler from a composition perspective. This reduction in entropy of
the training set will improve training time and require a less complex ANN.

The MIDI information is first extracted from the MIDI file using the midilnfo() function. This
function creates an nx8 matrix from the midi file where n is the number of notes in the same format
of that seen in Figure 7. The extracted midi information from each song is then combined together

into a single matrix.

Notesl midiInfo(midil,0);
Notes2 = midiInfo(midil,0);
Combined Notes = [Notesl;Notes2];

Next, the note data is extracted from the combined MIDI matrix to form a new matrix that will be

used for training the ANN.
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k=1;
[Data Points Rows] = size(Combined Notes);
for i=l:1:Data Points
if (Combined Notes(i,?) == 0) | (Combined Notes(i,2) == 1)
| (Combined Notes(i,2) == 2))
Combined Notes Cleaned(k,1l) = Combined Notes(i,3);
k=k+1;
end
end
k=1;
[Data Points Rows] = size(Combined Notes);

The data then needs to be separated into a training set and a test set. The training set consists of
90% of the data from the original data set, and the remaining 10% is used as a test set once the ANN
is trained. The training set is standardized to prevent the training from diverging. This is done by

adjusting the data set to have zero mean, and unit variance.

Sample Interval = floor(size(Combined Notes,1)* )
Sample Start Note = 1;

% Load Sequence Data

data =

transpose (Combined Notes Drumless(Sample Start Note:Sample Start Note
+Sample Interval));

% Partition to training and test data
numTimeStepsTrain = floor( *numel (data)) ;
dataTrain = data(l:numTimeStepsTrain+l) ;
dataTest = data(numTimeStepsTrain+!:end) ;

% Standardize the Data

mu = mean (dataTrain);

sig = std(dataTrain);

dataTrainStandardized = (dataTrain - mu) / sig;
% dataTrainStandardized = dataTrain;

% Prepare Predictor and Resonses
XTrain = dataTrainStandardized(l:end-1);
YTrain = dataTrainStandardized(”:end) ;

The features of the ANN are next defined. To reduce complexity, this ANN has a single input and a
single output. The ANN has 4 layers of size 200, 100, 200, and 100. The ANN architecture is defined
as a fully connected long short-term memory neural network with a sequence and regression layer.
This network architecture enables the ANN to be trained on time series data because of the

recurrent data path.
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numFeatures = 1;

numResponses = 1;
numHiddenUnitsl = ;
numHiddenUnits2 = ;
numHiddenUnits3 = ;
numHiddenUnits4 = ;
layers = [

sequencelInputLayer (numFeatures)

lstmLayer (numHiddenUnitsl, 'OutputMode', 'sequence')
lstmLayer (numHiddenUnits2, 'OutputMode', 'sequence')
lstmLayer (numHiddenUnits3, 'OutputMode', 'sequence')
lstmLayer (numHiddenUnits4, 'OutputMode', 'sequence')
fullyConnectedLayer (numResponses)

regressionlLayer];

The training parameters are next configured. The ANN is trained using the ADAM method discussed
earlier. Epochs is a hyperparameter that is chosen by the user to identify the number of times the
ANN is trained using the entire training dataset. The execution environment was chosen as GPU to
reduce training time. The use of GPU training allows for parallel computing resulting in shorter
training times. Initial learning rate was chosen to be 0.002. This value was settled on
experimentally as it resulted in successful training sessions without training needlessly slow. The
training rate decreased as the ANN trained. The training rate was recued by 10% the current value

5 times throughout the training process.

Itterations = ;

options = trainingOptions('adam',
'MaxEpochs',Itterations,
'ExecutionEnvironment', 'gpu',
'GradientThreshold', 1,
'InitiallLearnRate’', ,
'LearnRateSchedule', 'piecewise',
'LearnRateDropPeriod',Itterations/5,
'LearnRateDropFactor', ,
'Verbose', 0,
'Plots', 'training-progress');

Once training has completed the actual output is compared to the ANN predicted output. These
outputs are compared by their value and the root mean squared error of the actual notes and the

predicted note of the trained ANN. An example of the plots of this data from a training session can
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be seen in Figure 8 through Figure 10. The orange plot is the forecasted notes that the ANN

predicted given the blue plot in Figure 8.
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Figure 8: Observed Notes and Forecasted Notes
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Figure 10: RMSE of Observed Notes VS Forecasted Notes
A new MIDI file is then created with the predicted notes from the ANN and the actual notes
that are intended to be played. The time information from the original dataset is used to
reconstruct both of these newly generated MIDI files as the ANN was not trained to predict both
time and note information. An example of this outputted data in the form of sheet music from a

training session can be seen in Figure 11 and Figure 12.
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Figure 12: ANN Forecasted Future Sheet Music

CONCLUSION

From the plot seen in Figure 9 and Figure 10, note that the forecasted notes from the ANN
have a relatively low RMSE. The RMSE of the forecasted notes has a general trend of increasing as
the notes are further from the training set. This is likely due to the ANN “assuming” that the next
several notes will continue the pattern of a small set of the previous notes thus the uncertainty is
lower. As notes further from the trained set are predicted, the uncertainty increases and the RMSE
also increases. This behavior is as expected if the time series data is analyzed as a Markov chain. If
each subsequent note if a function of preceding notes, mutual information decreases as notes
become further from the training set. This means entropy and thus uncertainty increases as each
next note is predicted. This can be expresses as

N, >N, > N3 > - >N,
Where each note N is expressed as N,, and n is the nth note is the series. The mutual information in
the set can then be expressed as
I(Ny; Np) < I(Ny;N3) < o < T(Ny; Ny,)
From this expression, it can be observed that mutual information decreases and thus entropy and
uncertainty increase as subsequent notes are predicted.

Proformance could likely be improved by increasing the complexity of the neural network

by adding additional layers and adding more depth to each layer. This comes at a cost of increased

training time but can result in a lower RMSE for notes predicted further from the training set. A
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larger data set could also improve performance as this would provide more data for the ANN to
train on. This additional data could be from additional MIDI files of similar style.

The sheet music from the forecasted notes is not pleasant to listen to. This is likely do to
human hearing and music experience being very sensitive to subtleties. Even at a very low RMSE,
the forecasted notes can still sound bad. If one note is off by a single position, a person would be
able to identify that note as being out of place. This situation would result in a low RMSE but to a
human listener, it would not sound correct. A possible solution to this could be to train the ANN
with additional hyper parameters about the music as it’s training. If the ANN is trained with the key
that the song is being played in, the entropy of the next note in the series is reduced and the
likelihood that it will sound pleasant to a person is also increased.

Overall the project was successful. The trained ANN was able to forecast the next values in
time series data with a relatively low RMSE. With additional time and resources, the performance of

such an ANN could be improved and results could be pleasant to listen to.
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MATLAB CODE

clc
clear all
close all

addpath('D:\Akron\2018 Fall\Stochastic Processes\Project\Midi Functions')
addpath('D:\Akron\2018 Fall\Stochastic Processes\Project\clean midi\Ludwig
van Beethoven')

addpath('D:\Akron\2018 Fall\Stochastic Processes\Project\clean midi\Claude

Debussy"')

midil readmidi ('Menuet in G.mid');
midi2 = readmidi('Fur Elise.mid');

%% Combine Data

% Channel 9 is percusion

% https://pjb.com.au/muscript/gm.html
midiInfo(midil,0);

Notes2 = midiInfo(midiz,0);

Combined Notes = [Notesl;Notes2];

%% Clean the Data

% Extract the notes

=z
O
=t
()
[0)
—
Il

=l;
[Data Points Rows] = size(Combined Notes) ;
for i=l:1:Data Points
if ((Combined Notes(i,?) == 0) | (Combined Notes(i,2) == 1)
| (Combined Notes(i,2) == 2))
Combined Notes Cleaned(k,l) = Combined Notes(i,3);
k=k+1;
end
end
k=1;
[Data Points Rows] = size(Combined Notes) ;

)

o\
o\

% https://www.mathworks.com/help/deeplearning/examples/time-series-
forecasting-using-deep-learning.html

Sample Interval = floor(size(Combined Notes Cleaned,l)*0.85);
Sample Start Note = 1;

% Load Sequence Data

data =

transpose (Combined Notes Cleaned(Sample Start Note:Sample Start Note+Sample I
nterval)) ;

% Partition to training and test data
numTimeStepsTrain = floor(0.9*%numel (data)) ;
dataTrain = data(l:numTimeStepsTrain+1) ;
dataTest = data(numTimeStepsTrain+l:end);

% Standardize the Data

mu = mean(dataTrain) ;
sig = std(dataTrain);
dataTrainStandardized = (dataTrain - mu) / sig;

% dataTrainStandardized = dataTrain;

% Prepare Predictor and Resonses

XTrain = dataTrainStandardized(l:end-1) ;
YTrain = dataTrainStandardized(”:end) ;
%% Define LSTM Network Architecture
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[

% https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-
layers.html

numFeatures = 1;
numResponses = 1;
numHiddenUnitsl = 200;
numHiddenUnits2 = 100;
numHiddenUnits3 = 200;
numHiddenUnits4d = 100;
layers = [

sequencelnputlLayer (numFeatures)

lstmLayer (numHiddenUnitsl, 'OutputMode', 'sequence')
lstmLayer (numHiddenUnits2, 'OutputMode', 'sequence')
lstmLayer (numHiddenUnits3, 'OutputMode', 'sequence')
lstmLayer (numHiddenUnits4, 'OutputMode', 'sequence')
fullyConnectedLayer (numResponses)

regressionlLayer];

Itterations = 1000;

options = trainingOptions('adam',
'MaxEpochs',Itterations,
'ExecutionEnvironment', 'gpu',
'GradientThreshold', 1,
'InitiallearnRate',0.002, ... % 0.005 is default, 0.02 did a thing with

the layers above
'LearnRateSchedule', 'piecewise',
'LearnRateDropPeriod',Itterations/5,
'LearnRateDropFactor',0.9,
'Verbose', 0,
'Plots', 'training-progress');

% Train LSTM Network
net = trainNetwork(XTrain,YTrain,layers,options);

oe
oe

oe

Forcast Future Time Steps

% dataTestStandardized = (dataTest - mu) / sig;
dataTestStandardized = dataTest;

XTest = dataTestStandardized(l:end-1) ;

net = predictAndUpdateState (net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(l,:));

numTimeStepsTest = numel (XTest) ;
for i = 2:numTimeStepsTest
[net,YPred(:,1)] = predictAndUpdateState(net,YPred(:,i-
1) , 'ExecutionEnvironment', 'gpu');
end
% Unstandardize the prediction
YPred = YPred(:,l:numTimeStepsTest) ;
YPred = sig*YPred + mu;
% Calculate the RMSE from unstandardized predictions
YTest = dataTest(”2:end) ;
rmse = sqgrt(mean((YPred-YTest).”2));

o
o

% Plot the training series with the forecasted wvalues
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close all

figure

fl = plot(dataTrain(l:end-1));

hold on

idx = numTimeStepsTrain: (numTimeStepsTrain+numTimeStepsTest) ;
plot (idx, [data (numTimeStepsTrain) YPred],'.-")

[

% plot (idx, [data (numTimeStepsTrain) YPred(l:numTimeStepsTest)],'.-")
hold off

xlabel ("Time Step")

ylabel ("Notes™)

title("Forecast")

legend(["Observed" "Forecast"])

% Compare Forecasted values with test data
figure

subplot(2,1,1)

plot (YTest)

hold on

plot (YPred,'.-")

hold off

legend(["Observed" "Forecast'])

ylabel ("Cases")

title("Forecast™)

subplot(2,1,2)
stem(YPred - YTest)
xlabel ("Month™)

ylabel ("Error")
title("RMSE = " + rmse)

o\°
o\°

%% Create Output Midi File of the Future Notes

Output Midi Future = zeros(numTimeStepsTest,8);

Output Midi Future(:,1) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,1);

Output Midi Future(:,2) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,?);

Output Midi Future(:,3) = transpose(YTest(l,l:numTimeStepsTest)); % The
testeed Notes

Output Midi Future(:,4) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,4);

Output Midi Future(:,5) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,5);

Output Midi Future(:,6) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,0);

% Output Midi Future(:,5) =

Combined Notes (numTimeStepsTrain+l:numTimeStepsTrain+numTimeStepsTest,5);
% Output Midi Future(:,6) =

Combined Notes (numTimeStepsTrain+l:numTimeStepsTrain+numTimeStepsTest, 6);
Output Midi Future(:,7) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,7);

Output Midi Future(:,8) = Combined Notes(Sample Interval-
numTimeStepsTest+2:Sample Interval+l,8);

New Midi Future = matrix2midi(Output Midi Future);
writemidi (New Midi Future, 'Midi Future.mid');

%% Create Output Midi File of the Predicted Notes

% Output Midi Test = zeros (numTimeStepsTest,6);
Output Midi Prediction = zeros(numTimeStepsTest,8);
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Output Midi Prediction(:,1) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,l);

Output Midi Prediction(:,2) = Combined Notes(Sample Interval-
numTimeStepsTest+2:Sample Interval+l,2);

Output Midi Prediction(:,3) = transpose(floor(YPred(l,:))); % The predicted
Notes

Output Midi Prediction(:,4) = Combined Notes(Sample Interval-
numTimeStepsTest+2:Sample Interval+l,4);

Output Midi Prediction(:,5) = Combined Notes(Sample Interval-
numTimeStepsTest+2:Sample Interval+l,5);

Output Midi Prediction(:,6) = Combined Notes(Sample Interval-
numTimeStepsTest+2:Sample Interval+l,0);

Output Midi Prediction(:,7) = Combined Notes(Sample Interval-
numTimeStepsTest+”:Sample Interval+l,7);

Output Midi Prediction(:,8) = Combined Notes(Sample Interval-
numTimeStepsTest+2:Sample Interval+l,8);

New Midi Prediction = matrix2midi(Output Midi Prediction);
writemidi (New Midi Prediction, 'Midi Prediction.mid');
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MATLAB FUNCTIONS

MIDI-INFO()

function [Notes,endtime] = midiInfo(midi,outputFormat,tracklist,verbose)
[Notes,endtime] = midiInfo (midi,outputFormat, tracklist)

o° o

o\

Takes a midi structre and generates info on notes and messages
Can return a matrix of note parameters and/or output/display
formatted table of messages

o° oo

oe

% Inputs:

% midi - Matlab structure (created by readmidi.m)
% tracklist - which tracks to show ([] for all)

% outputFormat

oe

- if it's a string write the formated output to the file
- 1if 0, don't display or write formatted output
- 1if 1, Jjust display (default)

o° oo

oe

% outputs:

% Notes - a matrix containing a list of notes, ordered by start time
% column values are:

% 1 2 3 4 5 6 7 8

% [track chan nn vel tl t2 msgNuml msgNum2]

% endtime - time of end of track message

oe

o

Copyright (c) 2009 Ken Schutte
more info at: http://www.kenschutte.com/midi
if nargin<4

verbose = 0;
end
if nargin<3

tracklist=[];

if nargin<?2

outputFormat=1l;

end
end
if (isempty(tracklist))

tracklist = l:length(midi.track);
end

oe

o)

current tempo = 500000; % default tempo

[tempos, tempos time] = getTempoChanges(midi) ;

% What to do if no tempos are given?
% This seems at leat get things to work (see eire(l.mid)
if length (tempos) ==

tempos = [current tempo];

tempos time = [0];
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end

fid = =-1;
if (ischar (outputFormat))

fid = fopen(outputFormat, 'w');
end

endtime = -1;

o\

each row:

1 2 3 4 5 6 7 8

[track chan nn vel tl t2 msgNuml msgNum2]
Notes = zeros(0,8);

o\

o

for i=l:length(tracklist)
tracknum = tracklist (i)

cumtime=0;
seconds=0;

Msg = cell(0);

Msg{l,1} = 'chan';
Msg{l,2} = 'deltatime';
Msg{l,3} = "time';
Msg{l,4} = '"name';
Msg{l,5} = 'data';

for msgNum=1:length(midi.track(tracknum) .messages)

currMsg = midi.track(tracknum) .messages (msgNum) ;

midimeta = currMsg.midimeta;
deltatime = currMsg.deltatime;
data = currMsg.data;
type = currMsg.type;
chan = currMsg.chan;
cumtime = cumtime + deltatime;

seconds = seconds + deltatime*le-
6*current tempo/midi.ticks per quarter note;

[mx ind] = max(find(cumtime >= tempos_ time));
if numel (ind)>0 % if only we found smth
current tempo = tempos(ind);
else
if verbose
disp('No tempos time found?');
end
end

find start/stop of notes:

if (strcmp (name, 'Note on') && (data(2)>0))
note on with vel>O0:
if (midimeta==1 && type==144 && data(2)>0)

o)

% note on:

o° oo

o\°

Notes(end+1,:) = [tracknum chan data(l) data(2)

seconds O msgNum -1];
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% elseif ((strcmp (name, 'Note on') && (data(2)==0)) ||
strcmp (name, 'Note off'))
% note on with vel==0 or note off:
elseif (midimeta==1 && ( (type==144 && data(2)==0) || type==128 1))

o

note off:

[

% find index, wther tr,chan,and nn match, and not complete

o

ind = find((...
(Notes (:,l)==tracknum) +
(Notes (:,2)==chan) + .
(Notes (:,3)==data(l)) +
(Notes (:,8)===-1)...
)==4);

if (length(ind)==0)
%% was an error before; change to warning and ignore the message.
if verbose
warning('ending non-open note?');
end

else
if (length(ind)>1)
%% ??? not sure about this...
$disp ('warning: found mulitple matches in endNote, taking first...');
%% should we take first or last? should we give a warning?
ind = ind (1) ;

% set info on ending:
Notes(ind,6) = seconds;
Notes(ind, 8) = msgNum;

end

% end of track:
elseif (midimeta==0 && type==47)

if (endtime == -1)
endtime = seconds;
else

if verbose
disp('two "end of track" messages?');
end
endtime (end+1) = seconds;
end

end

o

we could check to make sure it ends with
% 'end of track'

if (outputFormat ~= 0)

% get some specific descriptions:
name = num2str (type);
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dataStr = num2str(data);

if (isempty(chan))

Msg{msgNum, 1} = '-';
else
Msg{msgNum, 1} = num2str (chan);

end

Msg{msgNum, 2} num2str (deltatime) ;
Msg{msgNum, 3} = formatTime (seconds) ;

if (midimeta==0)

Msg{msgNum,4} = 'meta';
else

Msg{msgNum,4} = '';
end

[name,dataStr] = getMsgInfo(midimeta, type, data);

Msg{msgNum, 5} = name;
Msg{msgNum, 6} = dataStr;
end

end %% end track.

%% any note-on that are not turned off?
nleft = sum(Notes(:,8)==-1);
if (nleft > 0)
Swarning (sprintf ('$d notes needed to be turned off at end of track.',
nleft));
Notes (Notes(:,8) == -1, 6) = seconds;
end

if (outputFormat ~= 0)
printTrackInfo (Msg,tracknum,fid) ;
end

end

% make this an option!!!

% - I'm not sure why it's needed...
% remove start silence:

first t = min(Notes(:,5));

= Notes(:,5) - first t;
Notes(:,6) - first t;

Z

O

prt

()

)]

—
)

~ ~
[

Q

% sort Notes by start time:
[junk,ord] = sort(Notes(:,5));
Notes = Notes(ord,:);

if (fid ~= -1)
fclose(fid) ;
end
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function printTrackInfo (Msg,tracknum,fid)

% make cols same length instead of Jjust using \t
for i=l:size(Msg,?)
maxLen (1)=0;
for j=l:size(Msg,l)
if (length(Msg{j,i})>maxLen(i))
maxLen (i) = length(Msg{j,i})’
end
end
end

S=VV;

s=[s sprintf('-——----"""----——--- \n'")1;
s=[s sprintf('Track %d\n',tracknum)];

s=[s sprintf('-——---——-—----- o \n")1;

if (fid == -1)
disp(s)
else
fprintf (fid, '%s',s);
end

for i=l:size(Msg,l)
line="";
for j=l:size(Msg,?)
sp = repmat(' ',1,5+maxLen(j)-length(Msg{i,j}));
m = Msg{i,j};

o)

m=m(:)'; % ensure column vector

% line = [line Msg{i,j} spl;
line = [line m sp]l;
end
if (fid == -1)
disp(line)
else
fprintf (fid, '$s\n',line);
end
end

function s=formatTime (seconds)

minutes = floor (seconds/60);
secs = seconds - 60*minutes;
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S =

sprintf ('%d:%2.3f',minutes, secs) ;

function [name,dataStr]=getMsgInfo(midimeta, type, data);
% meta events:
if (midimeta==0)

if (type==0); name = 'Sequence Number'; len=2;
num2str (data) ;

elseif (type==1); name = 'Text Events'; len=-1;
char (data) ;

elseif (type==2); name = 'Copyright Notice'; len=-1;
char (data) ;

elseif (type==3); name = 'Sequence/Track Name'; len=-1;
char (data) ;

elseif (type==4); name = 'Instrument Name'; len=-1;
char (data) ;

elseif (type==5); name = 'Lyric'; len=-1;
char (data) ;

elseif (type==6); name = 'Marker'; len=-1;
char (data) ;

elseif (type==7); name = 'Cue Point'; len=-1;
char (data) ;

elseif (type==32); name = 'MIDI Channel Prefix'; len=1;
num2str (data) ;

elseif (type==47); name = 'End of Track'; len=0;
T .

elseif (type==81); name = 'Set Tempo'; len=3;

val = data(l)*1o6*4+data(2)*16%2+data(3); dataStr = ['microsec

note: ' num2str(val)l];

elseif (type==84); name = 'SMPTE Offset'; len=5;

dataStr = ['[hh;mm;ss;fr;ff]="' mat2str(data)l];
elseif (type==88); name = 'Time Signature'; len=4;

dataStr =
notated 32nd notes='
elseif (type==89); name =

% num sharps/flats

% but data(l)

if (data(l)<=7)

[num2str (data(l))

v/v

num2str (data(3))
'Key Signature';
(flats negative)

is unsigned 8-bit

num2str (data(2)) ',
'/' num2str(data(4))]1;
len=2;

% 0 1 2 3 4 5 6 7
SS:{VCV,VGV,VDV, VAV, va,va, VF#V, vc#v};
dataStr = ss{data(l)+1};

elseif (data(l)>=249)
% 1 2 3 4 5 6 7
% 255 249

ss={'F','Bb','Eb','Ab','Db','Gb','Cb"};

dataStr = ss{255-data(l)+1};
else

dataStr = '"?"';
end
if (data(2)==0)

dataStr = [dataStr ' Major'];
else

dataStr = [dataStr ' Minor'];
end

dataStr =

dataStr =

dataStr =

dataStr =

dataStr =

dataStr =

dataStr =

dataStr =

dataStr =

dataStr =

per quarter

clock ticks and
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elseif (type==89); name
dataStr char (data) ;

% !'! last two conflict...

o

'Sequencer-S

else
name = ['UNKNOWN META EVENT: ' num2s
end
% meta 0x21 = MIDI port number, length 1
else

o

channel voice messages:

pecific Meta-event'; len=-1;

tr(type)]; dataStr num2str (data) ;

(? perhaps)

% (from event byte with chan removed, eg 0x8n -> 0x80 = 128 for

$ note off)

if (type==128); name = 'Note off'; len=2; dataStr =
['nn=" num2str(data(l)) ' vel=' num2str(data(?2))]:

elseif (type==144); name = 'Note on'; len=”; dataStr =
['nn=" num2str(data(l)) ' wvel=' num2str(data(?))]:

elseif (type==160); name = 'Polyphonic Key Pressure'; len=2; dataStr =
['nn=" num2str(data(l)) ' vel=' num2str(data(?2))]:

elseif (type==176); name = 'Controller Change'; len=2; dataStr =
['ctrl=" controllers(data(l)) ' wvalue=' num2str(data(2))]:;

elseif (type==192); name = 'Program Change'; len=1; dataStr =
['"instr=" num2str(data)l];

elseif (type==208); name = 'Channel Key Pressure'; len=1; dataStr =
['vel=" num2str(data)];

elseif (type==224); name = 'Pitch Bend'; len=2;

val = data(l)+data(2)*256;
val = base2dec('2000"'",16) = wval;
dataStr = ['change=' num2str(val) '?

o\°

channel mode messages:
unsure about data for these...
others not?)

o° oo

oe

17

(do some have a data byte and

% 0xCl1l 0xC8

elseif (type==193); name = 'All Sounds Off'; dataStr =
num2str (data) ;

elseif (type==194); name = 'Reset All Controllers'; dataStr =
num2str (data) ;

elseif (type==195); name = 'Local Control'; dataStr =
num2str (data) ;

elseif (type==196); name = 'All Notes Off'; dataStr =
num2str (data) ;

elseif (type==197); name = 'Omni Mode Off'; dataStr =
num2str (data) ;

elseif (type==198); name = 'Omni Mode On'; dataStr =
num2str (data) ;

elseif (type==199); name = 'Mono Mode On'; dataStr =
num2str (data) ;

elseif (type==200); name = 'Poly Mode On'; dataStr =
num2str (data) ;

% sysex, FO0->F7
elseif (type==240); name = 'Sysex 0xF0'; dataStr =

num2str (data) ;

27 |Page



elseif (type==241); name = 'Sysex OxF1'; dataStr =
num2str (data) ;

elseif (type==242); name
num2str (data) ;

elseif (type==243); name = 'Sysex 0xF3'; dataStr =
num2str (data) ;

elseif (type==244); name
num2str (data) ;

elseif (type==245); name = 'Sysex 0xF5'; dataStr =
num2str (data) ;

elseif (type==246); name
num2str (data) ;

elseif (type==247); name = 'Sysex 0xF7'; dataStr =
num2str (data) ;

'Sysex 0xF2'; dataStr =

'Sysex OxF4'; dataStr =

'Sysex OxF6'; dataStr =

% realtime
% (1 think have no data..?)
elseif (type==248); name = 'Real-time 0xF8 - Timing clock';
dataStr = num2str(data);
elseif (type==249); name
num2str (data) ;
elseif (type==250); name
dataStr = num2str(data);
elseif (type==251); name
dataStr = num2str(data);
elseif (type==252); name
dataStr = num2str(data);

'Real-time O0xF9'; dataStr

'Real-time OxFA

Start a sequence';

'Real-time OxFB - Continue a sequence';

'Real-time O0xFC

Stop a sequence';

elseif (type==253); name = 'Real-time OxFD'; dataStr =
num2str (data) ;

elseif (type==254); name = 'Real-time OxFE'; dataStr =
num2str (data) ;

elseif (type==255); name = 'Real-time OxFF'; dataStr =
num2str (data) ;

else

name = ['UNKNOWN MIDI EVENT: ' num2str(type)]; dataStr = num2str(data);

end

end

function s=controllers(n)

if (n==1); s='Mod Wheel';

elseif (n==2); s='Breath Controllery';
elseif (n==4),; s='Foot Controller';
elseif (n==5); s='Portamento Time';
elseif (n==0); s='Data Entry MSB';
elseif (n==7); s='Volume';

elseif (n==8); s='Balance';

elseif (n==10); s='Pan';

elseif (n==11); s='Expression Controller';
elseif (n==10); s='General Purpose 1';
elseif (n==17); s='General Purpose 2';
elseif (n==18); s='General Purpose 3';
elseif (n==19); s='General Purpose 4';
elseif (n==064); s='Sustain';
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elseif (n==065);
elseif (n==060);
elseif (n==07);
elseif (n==09);
elseif (n==80);
elseif (n==81);
elseif (n==82);
elseif (n==83);
elseif (n==91);
elseif (n==92);
elseif (n==93);
elseif (n==94);
elseif (n==95);
elseif (n==90);
elseif (n==97);
elseif (n==98);
elseif (n==99);
elseif (n==100);
elseif (n==101);
else

s='Portamento';

s='Sustenuto';

s='Soft Pedal';

s='Hold 2';

s='General Purpose 5';

s='Temp Change (General Purpose 6)'
s='General Purpose 7';

s='General Purpose 8';

s='Ext Effects Depth';

s="'Tremelo Depthy';

s='Chorus Depth';

s='Detune Depth (Celeste Depth)';
s='Phaser Depth';

s='Data Increment (Data Entry +1)"';
s='Data Decrement (Data Entry -1)"';
s='Non-Registered Param LSB';
s='Non-Registered Param MSB';
s='Registered Param LSB';
s='Registered Param MSB';

s='UNKNOWN CONTROLLER';

end

%Channel mode message values

%$Local Control
%A1l Notes Off
%$0mni Mode Off
%$0mni Mode On

%Reset All Controllers 79 121 Val ?2?
TA 122 val 0 = off, 7F (127)
7B 123 Val must be 0
7C 124 Val must be 0
7D 125 Val must be 0
TE 126 Val = # of channels,

$Mono Mode On

# voices in receiver

%$Poly Mode On

7F 127 Val must be 0

’

= on

or 0 1if # channels

equals
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ReadMIDI()

function midi = readmidi(filename, rawbytes)
% midi = readmidi (filename, rawbytes)
% midi = readmidi (filename)

o\

o\

Read MIDI file and store in a Matlab structure
(use midiInfo.m to see structure detail)

o\

o\

% Inputs:
% filename - input MIDI file
% rawbytes - 0 or 1: Include raw bytes in structure

oe

This info is redundant, but can be
useful for debugging. default=0

oe°

o

oe

Copyright (c) 2009 Ken Schutte
more info at: http://www.kenschutte.com/midi

oe

if (nargin<?)
rawbytes=0;
end

fid = fopen(filename) ;
[A count] = fread(fid, 'uint8');
fclose (fid) ;

if (rawbytes) midi.rawbytes all = A; end

o

realtime events: status: [F8, FF]. no data bytes
clock, undefined, start, continue, stop, undefined, active
sensing, systerm reset

oe

oe

o

file consists of "header chunk" and "track chunks"
4B  'MThd' (header) or 'MTrk' (track)
4B  32-bit unsigned int = number of bytes in chunk, not
counting these first 8

o oo

o

S HEADER CHUNK === == oo oo o oo o o o e e o
% 4B 'Mthd'

% 4B length

% 2B file format

% O=single track, l=multitrack synchronous, 2=multitrack asynchronous
% Synchronous formats start all tracks at the same time, while

asynchronous formats can start and end any track at any time during the
score.

% 2B track cout (must be 1 for format 0)

% 2B num delta-time ticks per quarter note

if ~isequal (A(1:4)',[77 84 104 100]1) % double('MThd'")
error('File does not begin with header ID (MThd)');
end
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header len = decode int(A(5:8));

if (header len == 0©)
else

error ('Header length != 6 bytes.');
end

format = decode int(A(9:10));

if (format==0 || format==1 || format==2)
midi.format = format;
else
error ('Format does not equal 0,1,or 2');
end

num_tracks = decode int(A(11:12));
if (format==0 && num_tracks~=l)

error('File is format 0, but num tracks != 1");
end

time unit = decode int(A(13:14));
if (bitand(time unit,2%415)==0)
midi.ticks per quarter note = time unit;
else
error ('Header: SMPTE time format found - not currently supported');
end

if (rawbytes)
midi.rawbytes header = A(1:14);

end

% end header parse —-———————————————- - ————

o\°

BREAK INTO SEPARATE TRACKS ——————————mm oo
midi.track(l).data = [byte byte byte ...]1;
midi.track(2).date =

o o° o° o°

o\°

Track Chunks---------
4B '"MTrk'
4B length (after first 8B)

o° oP

o

tr = 15;
for i=l:num tracks

Q

if ~isequal (A(ctr:ctr+3)',[77 84 114 107]1) % double('MTrk'")

error (['Track ' num2str(i) ' does not begin with track ID=MTrk']);
end
ctr = ctr+4;

track len = decode int(A(ctr:ctr+3));
ctr = ctr+4;
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% have track.rawbytes hold initial 8B also...
track rawbytes{i} = A((ctr-8):(ctrt+track len-1));

if (rawbytes)
midi.track(i) .rawbytes header = A(ctr-8:ctr-1);

end

ctr = ctr+track len;

oe

Events:
- meta events: start with 'FF'
- MIDI events: all others

o

o

oe

MIDI events:
optional command byte + 0,1,0r 2 bytes of parameters
"running mode": command byte omitted.

o 0o oe

oe

all midi command bytes have MSB=1
all data for inside midi command have value <= 127 (ie MSB=0)
-> so can determine running mode

o 0o oe

o

meta events' data may have any values (meta events have to set
len)

oe

oe

% 'Fn' MIDI commands:

% no chan. control the entire system
8 Timing Clock

A start a sequence

B continue a sequence

C stop a sequence

o

Meta events:
1B OxFF
1B event type
1B length of additional data
?? additional data

o° o° o° o°

o

o

"channel mode messages"
have same code as "control change": 0xBn
but uses reserved controller numbers 120-127

o

o° oo

%Midi events consist of an optional command byte
% followed by zero, one or two bytes of parameters.
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o° oo

o\

assumed.

o o° oe

o\

In running mode, the command can be omitted, in
which case the last MIDI command specified is

The first bit of a command byte is 1,

while the first bit of a parameter is always O.
In addition, the last 4 bits of a command
indicate the channel to which the event should
be sent; therefore, there are 6 possible

o\

o\

commands later) that can be specified. They are:
% parse tracks -—---—--—--—--—--— - -
for i=l:num tracks
track = track rawbytes{il};
if (rawbytes); midi.track(i).rawbytes = track; end

msgCtr = 1;
ctr=9; % first 8B were MTrk and length
while (ctr < length(track rawbytes{i}))

clear currMsg;
currMsg.used running mode = 0;
note:

d° d° d° oe oe

oe

tested for exact replication...

oe

ctr start msg = ctr;

commands (really 7, but we will discuss the x'Fn'

.used running mode is necessary only to

be able to reconstruct a file exactly from
the 'midi' structure. this is helpful for
debugging since write(read(filename))

can be

[deltatime,ctr] = decode var length(track, ctr);

oe

?
if (rawbytes)

o° oo

o°

end

deltaime must be 1-4 bytes long.
could check here...

o° oo

o

o

IFFI
if track(ctr)==255

type = track(ctr+l);

ctr = ctr+2;

get variable length 'length' field

CHECK FOR META EVENTS --—-——7—————————

currMsg.rawbytes deltatime = track(ctr start msg:ctr-1);

[len,ctr] = decode var length(track, ctr);

o)

% note: some meta events have pre-determined lengths...
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[

% we could try verifiying they are correct here.

thedata = track(ctr:ctr+len-1);
chan = [];

ctr = ctr + len;

midimeta = 0;
else
midimeta = 1;

% MIDI EVENT -——--—————————mm oo

[

% check for running mode:
if (track(ctr)<izg)

% make it re-do last command:

$ctr = ctr - 1;
$track(ctr) = last byte;
currMsg.used running mode = 1;

B = last byte;
nB = track(ctr); % °?

else
B = track(ctr);
nB = track(ctr+l);

ctr = ctr + 1;

end

oe

nibbles:
B = track(ctr);
nB = track(ctr+l);

o\°

oo

Hn = bitshift(B,-4);
Ln = bitand(B,15);
chan = [];

msg_type = midi msg type(B,nB);

% DEBUG:
if (i==2)

if (msgCtr==1)
disp(msg type);
end
end

switch msg type
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case 'channel mode'
% UNSURE: if all channel mode messages have 2 data byes
type = bitshift(Hn,4) + (nB-120+1);

thedata = track(ctr:ctr+l);

chan = Ln;

ctr = ctr + 2;

% —--—-- channel voice messages:
case 'channel voice'

type = bitshift (Hn,4);

len = channel voice msg len(type); % var length data:
thedata = track(ctr:ctr+len-1);

chan = Ln;

% DEBUG:
if (i==2)

if (msgCtr==1)
disp([999 Hn typel)
end
end

ctr = ctr + len;
case 'sysex'

% UNSURE: do sysex events (FO-F7) have
% variable length 'length' field?

[len,ctr] = decode var length(track, ctr);
type = B;

thedata = track(ctr:ctr+len-1);

chan = [];

ctr = ctr + len;
case 'sys realtime'

% UNSURE: I think these are all just one byte

type = B;
thedata = [];
chan = [1;
end

last byte = Ln + bitshift(Hn,%);

end % end midi event 'if'

currMsg.deltatime = deltatime;
currMsg.midimeta = midimeta;
currMsg.type = type;
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currMsg.data thedata;
currMsg.chan = chan;

if (rawbytes)

currMsg.rawbytes = track(ctr start msg:ctr-1);
end
midi.track(i) .messages(msgCtr) = currMsg;

msgCtr = msgCtr + 1;

end $ end loop over rawbytes
end $ end loop over tracks

function val=decode int (A)

val = 0;
for i=l:length(A)

val = val + bitshift(A(length(A)-i+1), 8*(i-1));
end

function len=channel voice msg len(type)

if (type==128); len=2;
elseif (type==144); len=2;
elseif (type==160); len=2;
elseif (type==176); len=2;
elseif (type==192); len=l;
elseif (type==208); len=l;
elseif (type==224); len=2;
else
disp(type); error('bad channel voice message type');

end

oe

o\°

decode variable length field (often deltatime)

o\°

o

return value and new position of pointer into 'bytes'

o

function [val,ptr] = decode var length(bytes, ptr)

keepgoing=1;

val = 0;

while (keepgoing)
% check MSB:

% 1if MSB=1, then delta-time continues into next byte...

if (~bitand(bytes(ptr),128))
keepgoing=0;
end
val = val*128 + rem(bytes(ptr), 128);
ptr=ptr+1;
end

% keep appending last 7 bits from each byte in the deltatime:
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o\

o\

Read first 2 bytes of msg and
determine the type
(most require only 1st byte)

o o° oe

o\

str is one of:
'channel mode'
'channel voice'
'sysex'
'sys _realtime'

o o° o° o°

o

°

function str=midi msg type (B,nB)

Hn
Ln

bitshift(B,-4);
bitand(B,7) ;

o

—-—-- channel mode messages:
%$1if (Hn==11 && nB>=120 && nB<=127)
if (Hn==11 && nB>=122 && nB<=127)

str = 'channel mode';
% ——-—-- channel voice messages:
elseif (Hn>=8 && Hn<=14)
str = 'channel voice';
% —---- sysex events:
elseif (Hn==15 && Ln>=0 && Ln<=7)
str = 'sysex';

% system real-time messages
elseif (Hn==15 && Ln>=8 && Ln<=1D5)
UNSURE: how can you tell between OxFF system real-time
message and OxFF meta event?
(now, it will always be processed by meta)
tr = 'sys realtime';

o° o oe

]

else
% don't think it can get here...
error ('bad midi message');

end
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WRITE-MIDI()

function rawbytes=writemidi (midi,filename,do run mode)

d° 0P o 0° O° O° d° A° Ad° oP° oe

o

oe

oe

rawbytes=writemidi (midi, filename,do_run mode)

writes to a midi file

midi is a structure like that created by readmidi.m

do run mode: flag - use running mode when possible.
if given, will override the msg.used running mode

default==0. (1 may not work...)

TODO: use note-on for note-off... (for other function...

Copyright (c) 2009 Ken Schutte
more info at: http://www.kenschutte.com/midi

%1f (nargin<3)
do run mode = 0;
$end

%

do each track:

Ntracks = length(midi.track);

for i=1:Ntracks

databytes track{i} = [1;

for j=l:length(midi.track(i) .messages)
msg = midi.track(i) .messages(]j);
msg bytes = encode var length(msg.deltatime);
if (msg.midimeta==1)

o)

% check for doing running mode
run_mode = 0;
run mode = msg.used running mode;

% should check that prev msg has same type to allow run

% mode...
% if (J>1 && do _run mode && msg.type ==
1) .type)
% run_mode = 1;
% end
msg bytes = [msg bytes; encode midi msg(msg, run mode)];

midi.track (i)

.messages (-

38|Page



else
msg _bytes = [msg bytes; encode meta msg(msg)];
end

disp (msg bytes')

oe

o\

if (msg _bytes ~= msg.rawbytes)
error ('rawbytes mismatch') ;
end

o\

oe

databytes track{i} = [databytes track{i}; msg bytes];

end
end

% HEADER
% double ('MThd') = [77 84 104 100]
rawbytes = [/7 84 104 100
00 0 6
encode_int(midi.format,?)
encode_int (Ntracks,?)
encode int(midi.ticks per quarter note,?)

1';

% TRACK_ CHUCKS
for i=1:Ntracks
a = length(databytes track{il}):;
$ double ('MTrk'") = [77 84 114 107]
tmp = [77 84 114 107
encode_int(length(databytes track{i}),4)
databytes track{i}'l"';
rawbytes (end+! :end+length (tmp)) = tmp;
end

Q

% write to file

fid = fopen(filename, 'w');
$fwrite (fid, rawbytes, "char') ;
fwrite(fid, rawbytes, 'uint8");
fclose(fid) ;

% return a column vector
function A=encode_ int(val,Nbytes)

for i=1:Nbytes
A(i) = bitand(bitshift(val, -8*(Nbytes-1i)), 255);
end

function bytes=encode var length(val)

% What should be done for fractional deltatime values?
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% Need to do this round() before anything else, including
% that first check for val<128

values

) .

% Probably should do rounding elsewhere and require
% this function to take an integer.
round(val) ;

val =

if val<l28 % covers 99% cases!
bytes = val;
return

end
binStr
Nbytes
binStr
bytes

)
) .

’

dec2base (round(val) , 2
ceil (length(binStr) /7
['00000000" binStr];
[1;

for i=1:Nbytes
if (i==1)

lastbit

else

lastbit

end
B =
byte
end

S

VOV;

vlv,.

bin2dec([lastbit binStr(end-i*7+1 :end-(i-1)*7)1);
= [B; bytes];

function bytes=encode midi msg(msg, run_ mode)

bytes

[1;

if (run _mode ~= 1)

byte

o)

byte
end

bytes

S

S

= msg.type;
% channel:
bytes + msg.chan; % lower nibble should be chan

[bytes; msg.datal;

function bytes=encode meta msg(msg)

bytes
bytes
bytes
bytes

255;

[bytes; msg.typel];

[bytes; encode var length(length(msg.data))l];
[bytes; msg.datal;

(or results in bug for some fractional
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